Robust ear identification using sparse representation of local texture descriptors

نویسندگان

  • Ajay Kumar
  • Tak-Shing Chan
چکیده

Abstract: Automated personal identification using localized ear images has wide range of civilian and law-enforcement applications. This paper investigates a new approach for more accurate ear recognition and verification problem using the sparse representation of local graylevel orientations. We exploit the computational simplicity of localized Radon transform for the robust ear shape representation and also investigate the effectiveness of local curvature encoding using Hessian based feature representation. The ear representation problem is modeled as the sparse coding solution based on multi-orientation Radon transform dictionary whose solution is computed using the convex optimization approach. We also study the nonnegative formulation such problem, to address the limitations from the regularized optimization problem, in the sparse representation of localized ear features. The log-Gabor filter based approach and the localized Radon transform based feature representation has been used as baseline algorithm to ascertain the effectiveness of the proposed approach. We present experimental results from publically available UND and IITD ear databases which achieve significant improvement in the performance, both for the recognition and authentication problem, and confirm the usefulness of proposed approach for more accurate ear identification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Training-free Classification Framework for Textures, Writers, and Materials

We propose a training-free texture classification scheme, outperforming methods that use training. This we demonstrate not only for traditional texture benchmarks, but also for the identification of materials and writers of musical scores. State-of-the-art methods operate using local descriptors, their intermediate representation over trained dictionaries, and classifiers. For the first two ste...

متن کامل

A Bag-of-Features Approach for the Classification of Melanomas in Dermoscopy Images: The Role of Color and Texture Descriptors

The identification of melanomas in dermoscopy images is still an up to date challenge. Several Computer Aided-Diagnosis Systems for the early diagnosis of melanomas have been proposed in the last two decades. This chapter presents an approach to diagnose melanomas using Bag-of-features, a classification method based on a local description of the image in small patches. Moreover, a comparison be...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Experimental Assessment on Latent Fingerprint Matching Using Affine Transformation

In forensics latent fingerprint identification is critical importance to identifying suspects: latent fingerprints are invisible fingerprint impressions left by fingers on surfaces of objects. The proposed algorithm uses a robust alignment algorithm (mixture contour and Orientation based Descriptor) to align fingerprints and to get the similarity score between fingerprints by considering minuti...

متن کامل

Object Class Recognition Using Discriminative Local Features

In this paper, we introduce a scale-invariant feature selection method that learns to recognize and detect object classes from images of natural scenes. The first step of our method consists of clustering local scale-invariant descriptors to characterize object class appearance. Next, we train part classifiers on the groups, and perform feature selection to determine the most discriminative par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013